Galaxy evolution in the Virgo cluster

Bernd Vollmer CDS, Observatoire de Strasbourg

(VIVA: J. Kenney, J. van Gorkom, A. Chung, H. Crowl, **R. Beck, M. Soida**, J. Braine)

Interaction of a spiral galaxy with its environment

- Gravitational interaction galaxy cluster
- Gravitational interaction galaxy - galaxy
- Ram pressure galaxy
 ISM intracluster medium
 (ICM)

(Böhringer et al. 1994)

(Kenney et al. 2004)

Atomic gas: the HI view

(Chung et al. 20009)

HI deficiency = log((expected HI mass)/(observed HI mass))

Cluster spirals are HI deficient and show truncated gas disks

Molecular gas in cluster galaxies

- only mildly molecular-gas deficient galaxies in the Virgo cluster
- HI-def galaxies have slightly smaller CO disks
- the CO detection rate of Virgo early type galaxies is
 NOT different from that of the field (Atlas^{3D}; Young et al. 2011)

Star formation: the H α view

52 Virgo galaxies: 37% normal, 6% anemic, 6% enhanced, 52% truncated

Gas and star formation

 Except for N4438, the cluster environment does not significantly change SFR_{mol}=SFR/M_{mol} in the disks
 continuous regions of low molecular star formation efficiencies in the compressed parts of NGC 4501
 NGC4330, NGC4438, N4522 show a depressed SFE_{tot} in the extraplanar regions

Interaction diagnostics

- Which interaction is responsible for the observed distorsions/perturbations?
- Determination of the interaction parameters
- Means: HI/CO maps and velocity fields, dynamical simulations, *polarized radio continuum emission*,

photometry+ spectroscopy + stellar population synthesis

VIVA = VLA Imaging of Virgo in Atomic Gas

(A. Chung, J. van Gorkom, J. Kenney, H. Crowl, B. Vollmer)

MHD simulations

(M. Soida, Krakov)

 Solve the induction equation on the velocity fields of the sticky particle simulations →

evolution of the large scale regular magnetic field

 Assume relativistic electron distribution evolution of the polarized radio continuum emission

grey: HI, contours: PI

(Vollmer et al. 2006)

11 30

109

09.30

NDUTAN

Comparison between the models and the observations

- *Known*: systemic velocity, distance from cluster center, i, PA, gas distribution **and** velocity field
- Unknown: maximum ram pressure, time to maximum, angle between galactic disk and ram pressure wind

Ram pressure stripping criterion: Gunn & Gott (1972): $\Sigma_{gas} v_{rot}^2/R = \rho_{ICM} v_{gal}^2$

A case study: NGC 4522

40 35 RIGHT ASCENSION (J2000)

45

12 33 50

- **Distance from M87:** • 3.3° ~ 1 Mpc
- Radial velocity: +1000km/s lacksquarew.r.t. M87
- View: edge-on \bullet

NGC 4522: the « best fit » model

NGC 4522: final result

Ram pressure stripping time sequence

Vollmer (2009) - update

NGC 4438 BSERVATION model NGC 4402 model MODEL OBSERVATIONS ENTER: RA 12 26 07.53 Minutes model 25 24 23 ັ້ງ 11°22 model 0 Rh (kor) model model model NGC 4330 NGC 4522 NGC 4388 NGC 4569

~200Myr after peak ~300Myr after peak

near peak

pre-peak

NGC 4501

Independent confirmation of stripping ages

• NGC 4522 (Crowl & Kenney 2007, 2008)

The 3D view

Ram pressure and the multiphase ISM

Molecular gas fraction

- Inside the truncation radius, gas disks are normal
- **Enhanced molecular** fraction in 3 galaxies (NGC4330, NGC4501, NGC4522)

Ram pressure stripping of the multiphase ISM

Vollmer et al. (2008)

 IRAM 30m HERA CO(2-1) observations

NGC 4522: decoupled moecular clouds

NGC 4438: decoupeled molecular clouds

Ram pressure stripping of the multiphase ISM

NGC 4438 Vollmer et al. (2009)

Diffuse ionized gas (H α) is stripped more efficiently -> lower column density

Star formation in the stripped gas

(important for radio continuum emission)

Vollmer et al. (2008)

Radio continuum observations of Virgo cluster galaxies

Radio continuum basics

- Radio continuum emission $\alpha n_{CR}B^2$
- Total power -> total magnetic field (large- and small-scale)
- Diffusion of CR electron
- Polarized emission -> large-scale B (resolution)
- Polarized emission sensitive to compression and shear motions

Radio continuum –SFR correlation

SFR = GALEX FUV + Spitzer 24 μ m (+ Spitzer 70 μ m or Herschel 100 μ m)

Radio bright or radio dim regions

NGC 4501 (pre-peak)

NGC 4522 (close to peak) ~

radio bright

09 13

12

10

09

08

12 33 50

DECLINATION (J2000)

40 35 RIGHT ASCENSION (J2000)

45

NGC 4522 HI on R

30

radio/SFR

Conclusions I

- Polarized radio continuum emission is a useful tool for interaction diagnostics
- Efficiency of ram pressure stripping is ~1 (Gunn & Gott works) – overall the neutral ISM is stripped as an entity
- Temporal ram pressure sequence in the Virgo cluster
- Stellar population synthesis models confirm model stripping ages
- Neutral gas is stripped as an entity
- Indication of different stripping efficiencies of diffuse ionized ISM under certain circumstances
- Ram pressure decreases star formation on small timescales

Conclusions II

- Radio FIR / radio SFR correlations show a slope of ~1
- 3 outliers out of 22 galaxies
- Radio strong/weak regions based on radio SFR correlation
- Most peculiar regions in Virgo spiral galaxies are radio bright
- Positive correlation between polarization and radio/SFR in 7 perturbed galaxies (compression/shear)
- Modelling of the radio emission is under way